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Abstract 

This paper presents a technology for hand calculating the degree of 

observer agreement using log linear models. A coefficient of agreement may 

be calculated which describes the magnitude of observer agreement as the 

estimated probability, under a quasi-independence nzodel, that different 

observer responses will agree. 

probability of agrement for one or more response categories within a larger 

Procedures and formulas for measuring the 

set are also available. Finally, systematic disagreement m n g  observers 

may also be examined with the available technology. 



Observational studies of hman behavior often require the recording 

of a n&r of behavioral categories. 

studies require the assessment of agreement between observers. Measures 

such as the percentage of agreement, Cohen's kappa, and phi have been used 

to measure obsemer agreement, but these coefficients have limitations. 

Procedures that avoid the limitations of kappa and phi have been introduced 

in the literature (Bergan, 1980a). However, this technology, which utilizes 

log linear models, requires the use of a high speed digital computer. 

limits the use of such procedures in applied behavioral research. 

sent paper intrcduces a new procedure for hand calculating the degree of 

observer agreement using log linear models. 

In addition, most observational 

This 

The pre- 

The application of log linear 

d e l s  for measuring observer agreement has the advantages of yielding a 

probability based coefficient of agreement with a directly interpretable 

meaning, correcting for the proportion of "chance" agreement, and providing 

an interpretable coefficient of "no agreement. 

Although various log linear d e l s  may be applied for neasuring observer 

agreement, th is  paper will focus on the use of the quasi-independence concept 

for assessing agrement. 

this procedure for measuring observer agreement has several advantages. Use 

of the quasi-independence concept yields a coefficient of observer agreement 

that varies between zero and one and measures agreement in terms of the pro- 

bability that the observers' judgments will agree, as estimted under a quasi- 

independence d e l .  

single observational category or specific group of categories is a major con- 

tributor to the coefficient of agreement. Finally, systematic occurrences of 

disagreement between observers may be located and measured. 

As Bergan (1980a) pointed out, the application of 

This procedure may also be used to investigate if a 



Assessment Procedures 

To assess agreement, the judgments of the observers are organized into 

a contingency table. 

observer agreement when the table encompasses two or mre observers recording 

three or mre response categories. 

comprising a contingency table is measured by testing the hypothesis that a 

subset of the contingency table cells are independent. 

nating specific cells from the initial contingency table it is possible to 

segregate critical cells that account for association between the variables. 

The procedure for measuring observer agreement requires the hand calcu- 

The quasi-independence &el is recommended for measuring 

Quasi-independence m n g  the variables 

Furthemre, by elimi- 

lation of maximum likelihood estimates of expected cell frequencies, under 

the model of quasi-independence. 

the Deming-Stephens iterative fitting procedure must be applied. 

To derive these expected cell frequencies 

In the 

Deming-Stephens algorithm, preliminaq estimates of the expected values are 

made, then successively adjusted until they meet the criterion that the row 

and column sums (i.e., marginals) for the estimated frequencies w i t h i n  the 

table equal the row and column sums for the observed values. 

mum likelihood expected cell frequencies are calculated, the chi-square 

statistic may be used to assess independence amng the subset contingency 

table cells. 

Once the'maxi- 

Since information regarding agreement by tm observers is located w i t h i n  

the diagonal cells in the contingency table, disagreement in the table may be 

assessed with a chi-square test of quasi-independence with diagonal cells 

deleted. By applying the chi-square test of independence, which measures 

agreement and disagreement, a baseline model can be formed. Statistical 

tests measuring the significance of the diagonal cells contribution to 
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agreement may be conducted by subtracting the chi-square values for assorted 

tests of quasi-independence from the chi-square value for the test of inde- 

pendence. 

Following the attainment of a quasi-independence @el that fits the 

observed contingency table frequencies, as indicated by a non-significant 

chi-square value, the magnitude of observer agreement under the model of 

quasi-independence m y  be hand calculated. More specifically, by using maxi- 

mum likelihood probability estimates, that are based on the expected cell 

frequencies, the degree of agreement within the diagonal cells representing 

observer agreement an'd degree of observer disagreement within the off-diagonal 

cells may be assessed and exaxnined. 

The following sections will discuss in detail the procedures for testing 

the model-data fit, assessing the magnitude of observer agreement, investi- 

gating systematic observer diagreeement, and hand calculating the expected 

cell frequencies with the Deming-Stephens iterative method. 

quantitative example will be presented to facilitate the understanding of 

these procedures. 

In addition, a 

Independence and Quasi-Independence Models 

The m e l s  of quasi-independence are best illustrated by associating them 

with the d e l  of independence. 

are organized into a two-dimensional I x I contingency table, the rows in the 

table will represent the first observer's responses, 1 to I, and the c o i m  

will represent the second observer's responses, 1 to I. 

within the contingency table are labeled with f's. 

the frequency with which both observers coded the second response category. 

An inspection of the table will reveal that observer agreement frequencies are 

represented in the diagonal cells. 

If the judgments of two observers, A and B, 

Cell frequencies 

For instance, fZ2 represents 

3 



A test of independence of responses by two observers, depicted in a 
A B two-dimensional table, may be portrayed with the model nii = TT x n io 

A The symbol T~~ represents the probability of occurrence of cell ii, n i 
represents the probability of occurrence of variable A at level i and TF 

represents the probability of occurrence of variable B at level i. The 

B 

calculation of maximum likelihood estimates of expected cell frequencies for 

the test of independence are based on the aforementioned mathmatical mdel. 

These estimates are computed by multiplying the cell probabilities by the 

total frequency of observations represented in the table (N). The model 

under investigation "fits" the data if the maximum likelihood estimates of 

expected cell frequencies conform closely to the observed cell frequencies. 

The likelihood-ratio statistic tests the fit of the data and d e l  hypothe- 

sizing independence between observer responses. 

Quasi-independence m n g  variables comprising a contingency table is 

measured by testing the hypothesis that a subset of the contingency table 

cells are independent (Bishop, Fienberg, & Holland, 1975). By eliminating 

specific cells from the initial contingency table it is possible to segre- 

gate critical cells that account for association between the variables. 

The actual process of elimiriating cells fmm the contingency table refers 

to placing structural zeros within the critical cells. Structural zeros . 

are created by constraining expected cell frequencies to be equal to observed 

values. Setting estimates of expected frequencies equal to observed frequen- 

cies achieves t h i s  constraint and does not contribute to the value of the 

likelihood-ratio chi-square statistic. A demnstration of how structural 

zeros do not contribute to the chi-square value can be shown by applying 

the following likelihood-ratio statistic: 
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= 2 C(observed) * L  

For example, if the diagonal cell's observed 

Observed 
log Expected 

and expected values were set 

equal, the quantity for the portion of the formula log (observed/expcted) 

muld be zero for all of the diagonal cells. 

zeros in the diagonal cells wuld eliminate any contribution to the chi- 

square value by the diagonal cells. 

Therefore, placing structural 

To test the hypothesis of quasi-independence it is mandatory that an 

algorithm called iterative porportional fitting be used to estimate the 

maximum likelihood expected cell frequencies. This procedure, which will 

be discussed later in the paper, establishes preliminary estimates of the 

expected values and successively adjusts them until they meet the criterion 

that the marginal totals for the estimated frequencies is equal to the mar- 

ginal totals for the observed values, The expected and observed marginal 

totals, in an 

converge only 

incomplete table 

if the following 

'i+ + 

with structural zeros in the diagonal, will 

assumption is met: 

'+i c N  

where Xi+ is the sum of the frequencies in non-structural-zero cells in 

row i, X+iis the sum of the frequencies in non-structural-zero cells in 

column i, and N is the sum of the frequencies in all of the non-structural 

zero cells (Bishop, Feinberg, & Holland, 1975). 

Once the max- likelihood expected frequencies are calculated, the 

likelihood-ratio chi-square statistic may be used to assess independence 

among the non-structural zero cells. Degrees of freedom for the model of 

quasi-independence are determined by subtracting frm the total nlrmber of 

contingency table cells the number of cells with structural zeros, one for 

the sample size constraint, and the number of independent parameters. 
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Assessinq Agreement by Cornparins Models of Independence and Quasi-Independence 

Since information regarding agreement by t w o  observers is located within 

the diagonal cells in the contingency table, disagreement in the table may 

be assessed with a chi-square test of quasi-independence with diagonal cells 

deleted (Bishop, Feinberg, & Holland, 1975). By applying the chi-square test 

of independence, which measures agreertlent and disagreement, a baseline d e l  

can be formed. Statistical tests measuring the significance of the diagonal 

cells contribution to agreement may be conducted by subtracting the chi-square 

values for assorted hierarchical tests of quasi-independence frm the chi- 

square value for the test of independence. Goodman (1975) defined two mdels as 

hierarchically related if the subordinate model pssessed all of the constraints 

of the superordinate d e l  in addition to one or more further constraints. 

instance, the d e l  of independence is hierarchically related to a d e l  of 

For 

quasi-independence w i t h  the diagonal cells deleted. With hierarchical -1s 

the superordinate d e l  implies the subordinate del. Therefore, the d e l  

of independence implies the mdel of quasi-independence. 

independence fits the data (i-e., has a statistically nonsignificant chi-square 

value), then the model of quasi-independence would also fit the data. 

If the model of 

The advantage of the likelihood-ratio chi-square statistic lies in its 

abi l i ty  to be partitioned exactly into independent component chi-squares and 

summed to achieve the overall contingency table chi-square and degrees of 

freedom (Cochran, 1954). This property allows the independence mdel and 

chi-square to be partitioned into component chi-squares such as the chi- 

square for the test of quasi-indepe_rldence and the chi-square indicating the 

difference between the independence and quasi-independence values. Subtracting 

the chi-square value and related degress of freedom for a test of quasi-independence 
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with all the diagonal cells eliminated from the chi-square value and related 

degrees of freedom for the test of independence would provide a chi-square 

value that muld measure if the diagonal cells provide a significant contri- 

bution to the association in the contingency table. 

BY the aforementioned d e l  comparison procedures, the specific 

chi.-square contribution of a single agreement cell or subset of agrement 

cells can be assessed. An experimenter wishing to investigate the contribu- 

tion of each agreement category represented in the diagonals of a 3 x 3 table 

may accomplish t h i s  by using several different quasi-independence d e l s  and 

compare them with the independence model. For example, the investigator 

could set up three quasi-independence models each ruling out one of the 

diagonal cells fll, fZ2, and f33, respectively. 

values for these independence mdels could be subtracted from the chi-square 

Each of the chi-squaxe 

value for the independence &el to test if the specific cell provided a 

significant contribution to del-data fit. If a d e l  of quasi-independence 

ruled aut a single cell such as fll, and the difference between the chi- 

square values for the quasi-independence and independence rmdels had a value 

of 3.84 (critical value for 1 degree of freedom) or larger then the contri- 

bution of that cell to agreerent would be statistically significant. If the 

difference chi-square value was less than 3.84 then the investigator could 

not conclude that the observers' judpents agreed for the first behavioral 

category, regardless of the n h r  of agreement frequencies in the f cell. 11 
Investigators may also find that an off-diagonal disagreement cell 

provides a significant contribution to the overall chi-square value. A case 

of systematic disagreement between observers may occur if observer A codes 

a specific behavior in the first category and observer B codes that behavior 
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in the second category. 

observers' responses exists, a quasi-independence @el may be developed 

which places structural zeros in the hypothesized cell or cells denoting 

systematic disagreement. 

male1 is subtracted from the chi-square value for the independence d e l  

to test the statistical significance of the association. 

Estimating the Magnitude of Aqrement under the Model of Quasi-Independence 

A quasi-independence d e l  and the maximum likelihood estimates of 

probabilities for agreement and disagreemnt may be used for the computation 

of the degree of agrement between observers. Goodman's (1975) mrk with 

response scaling and Bergan (1980a) have demnstrated that from mdefs of 

quasi-independence, with structural zeros in the cells representing agree- 

ment, maximum likelihood probability estimates may be calculated for the 

agreement cells. In addition, the off-diagonal or disagreerrent cells may 

also have a probability estimate computed. 

estimates is based on the mdel fitting the data. Therefore, a chi-square 

value for a quasi-independence d e l  must be statistically non-significant 

to indicate an appropriate model-data fit. 

vations for three behavioral categories, the maximum likelihood estimates 

representing agreement and disagreement would be expressed in four classi- 

fications. 

diagonal cells, respectively. 

the six cumulative off-diagonal disagreement cells. 

To test if a significant association between the 

The chi-square value for the quasi-independence 

The precision of the probability 

Given a 3 x 3 table with obser- 

The first three classifications would represent each of the 

The fourth classification would represent 

Gccdman (1975) assumed that the off-diagonal observer disagreement 

responses (i.e., cells without structural zeros) were independent. He also 

assumed the expected response pattern for each diagonal cell w i t h  a structural 
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zero had a probability of 1. Given these assumptions, the following 

fomla computes the maxirmrm likelihood estimate for the probability that 

observers' A and B responses wuld be represented within the disagreement 

category: 
A- Ag 

ij/ "Aio IT jo ^AB A 

TIo = IT 

* 
where  IT^ is the estimated probability of disagreement between observers, 

is the estimated probability of a disagreement response Fij (i # j) ' ij 
n for both observers; TI io is the conditional probability of observer A emitting 

response i, assuming the observers' ij response pattern denotes a disagreeient 

between the observers: and iB 
emitting response j. 

expressed with the following maximum likelihood estimate: 

is the conditional probability of observer B 
jo 

The probability of a specific agreement category - t is 

A A AX AE 
' T T  TT TT - 

TTt - Pij 0 io jo 

where pij is the observed proportion of a specific observer agreement category 

- t as designated in the ij cell, iAi0 is the maximum likelihood estimate of 
observer A's response i given the disagreement category 0 and iB 
maximum likelihood estimate of observer B's response j given the disagrement 

is the 
jo 

category. 

In formula (1) the IT ij value is calculated by dividing the response 
A 

pattern ij expected cell frequency (F. . )  by the total number of observer 
1 7  

responses (N). The camputation of the rAi0 and srB 

expected cell frequencies and use of the following formula for polytcmus 

values require the 
jo 

variables : 
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here 8. / i'o represents the  odd^ of an i disagreement response to an 

i' disagreement response, by observer A. 

1 

These odds are obtained fram the 

following estimated expected cell 

aAi/ ilo 

where ij and ijl are disagreenent 

Goodtman's work with response 

denonstrated that the probability 

f requencies : 
h h 

= F. ./ Fij, 
13 

response pattern. 

scaling and models of quasi-independence 

for the agreement (i.e., structural zero 

cells) and disagreement (i.e., non-structural zero cells) categories add to 

one. Therefore, the estimated proportion of the sum of the agreement cells 

equals one minus the probability for the disagreemnt cells. By placing 

structural zeros in the agreant/diagonal cells within a contingency table 

signifying the response distribution of two observers, an index of the magni- 

tude of observer agreement can he developed. The following formula connotes 

the magnitude of observer agreement as the estimated probability that judg- 

rents from two observers will occur in one of the agreerent categories (TT ) : A 

4 

h h 

h 

where 

observers will occur in the disagreement category. 

is the estimated probability that a pair of judgments from the 

Iterative Comp utations of Fxpe cted Frequencies 

The estimated expected frequencies under the &el of quasi-independence 

must be camputed by an algorithm called iterative proportional fitting. In 

the Mg-Stephens (Feinberg, 1978) algorithm, preliminary estimates of the 

expzcted values are made, then successively adjusted until they meet the cri- 

terion that the marginal totals for the estimated frequencies equal the 

10 



marginal totals for the observed values. Therefore: 
A A - andF = f  Fi+ - fi+ +j +j 

for all i and j in the subset of off-diagonal cells. Since the diagonal cells 

contain structural zeros under the agreenentrrsdel of quasi-independence, the 

frequency sunanations are only across non-structural-zero cells. 
A 

equal the expected frequency of the (i,j)th cell, with Xij equal 
Let Fij A 

to the observed frequency. Let us also assume that Xi+ or Fi+, etc...., 

refer to the sumnation across only non-structural-zero cells. The initial 

A(o'  and the subsequent Kth start values within the table are denoted as F 

iteration as F 
ij 

(K) 
ij 

To hasten the iterative process, rather than insert values of one within 

the table for s t a r t  values it is recommended that a proportion of the cell 

frequencies be estimated from the marginal values and used as the start values 

1. The procedure sequentially fixes one set of marginal values and (; (0) 
ij 

allows the other set of marginals to vary. To calculate the proportional 

star t  values, consider a 3 x 3 table with the diagonal cells deleted. Begin 

by fixing the column marginals and allowing the row mrginals to vary. Cell 
;(O) is estimated with specific marginal frequencies from the original 21 
table : 

" ( O )  are estimated by: A (0) 
31 and 13 / v  

Similarly cells F 
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Once the star t  values are calculated, the 

two-step manner, with: 

algorithm proceeds in a 

and 
(K) 

i+ F 

J-J 

The procedure alternates between fixing the row and column marginals. 

During the iterative process the improvement in the subsequent fits come from 

the estimated marginals getting nearer to the observed marginals. Following 

several large estimation leaps initially, the convergence process slows down 

with smaller estimation changes. Thus, once the investigator gets past the 

initial estimation leaps, a 

out considerable iteration. 

"reasonable" approximation may be expected with- 

surranary 
The present paper has briefly described how observational studies that 

assess agreement between observers may establish the reliability of the ob- 

servations with a greater degree of accuracy. 

such as the &el of quasi-independence, for the purpose of measuring 

observer agreement the investigator may hand calculate a probability-based 

coefficient of agreement w i t h  a directly interpretable meaning, correct for 

the proprtion of "chance" agreement, and calculate a meaningful coefficient 

of "no agreement. 

By applying log linear models, 
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